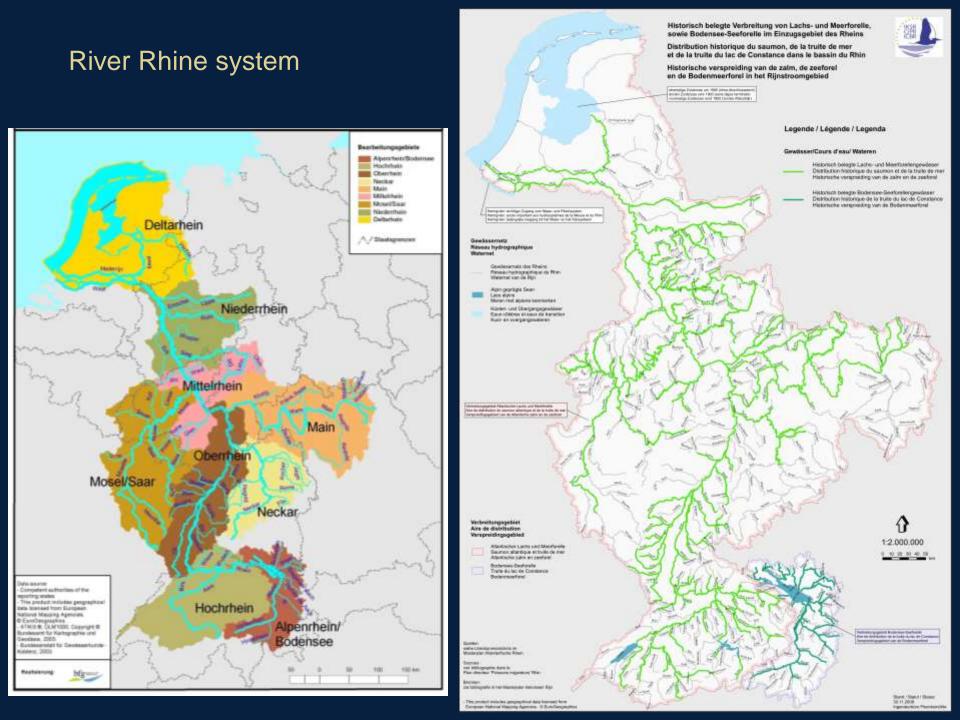


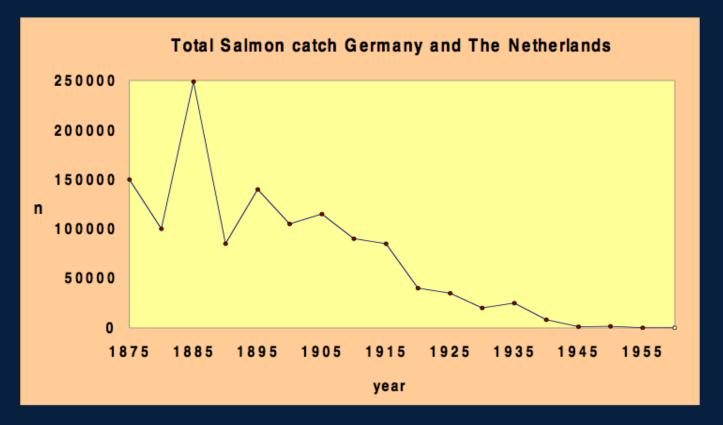
Salmon 2020 - Reintroduction of Atlantic Salmon in the river Rhine system

Du Plan Saumon Rhin 2000 au Plan 2020



Presentation by: Dr. Jörg Schneider, BFS Frankfurt, Germany

Contents


- Historical situation
- History and reasons for the reintroduction program SALMON 2020
- Monitoring stations
- Available habitat
- Migration and barriers
- Trends and conclusion

Decline of Atlantic Salmon Population in the Rhine

- Pollution

 (eutrophication, acid rain, pesticides, temperature)
- Barriers to migration (upstream and downstream migration)
- Over-exploitation
- Habitat destruction (flow alteration, siltation, river "correction")

... the historical population-size must have exceeded a million returners per year

Decline of Atlantic Salmon Population in the Rhine In the 1970ies the Rhine was the most polluted river in Europe!

- Pollution (eutrophication, acid rain, pesticides, temperature)
- Barriers to migration (upstream and downstream migration)
- Over-exploitation
- Habitat destruction (flow alteration, siltation, river "correction")

The Sandoz accident and SALMON 2000

- In 1986 a blast in the Sandoz chemical factory in Schweizerhalle / Switzerland polluted the Rhine on a stretch of several hundred kilometres
- Shortly after the ICPR was charged to draft a plan which would ultimately change the image of the Rhine as a sewer
- In 1987 the Rhine ministers approved of the "Rhine Action Plan"
- Important aim: the return of long-distance migratory fish, like the Atlantic salmon by the year 2000
- As salmon is a symbol for clean water and acts as an indicator species for a successful rehabilitation of the ecosystem, the project was named SALMON 2000 – later: SALMON 2020.

The aims of SALMON 2020:

Several thousands of salmon in the Rhine

Careful estimate: 20,000 to 30,000 salmon annually migrating upstream (SCHNEIDER, 2009).

Natural reproduction and selfsustaining populations

Suitable spawning grounds exist in most rivers stocked with salmon.

Self-sustaining populations are possible if free access to the spawning-habitats is re-established Salmon stocking started in 1987 and was significantly extended since 1994

Rhine:

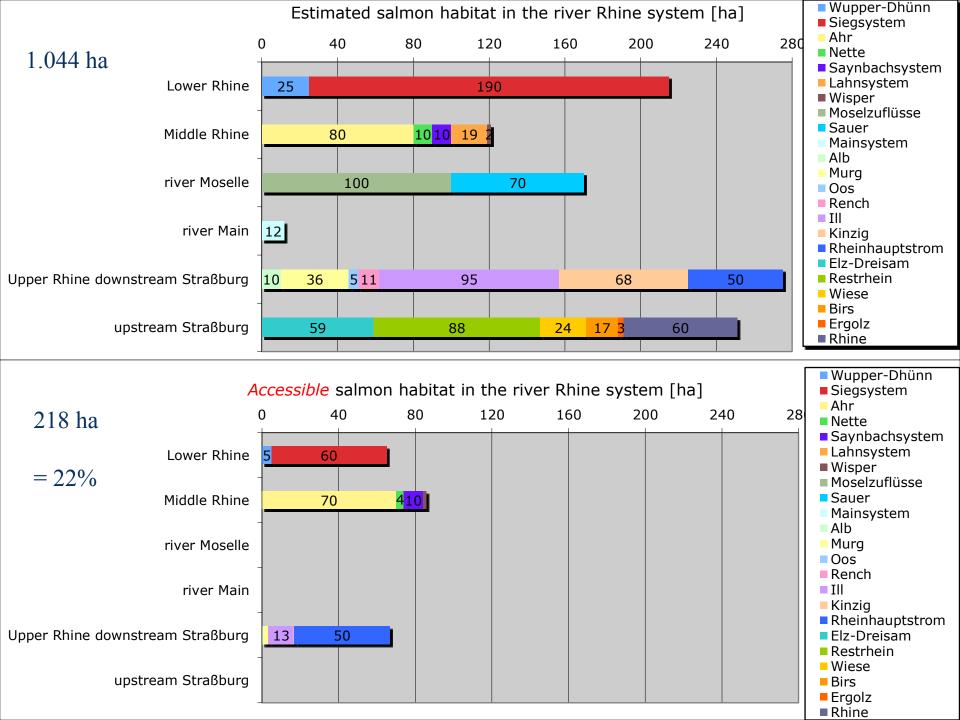
- Switzerland
- France
- Germany
- Luxembourg

Maas:

- Belgium
- Germany

The Netherlands do not have spawning and rearing habitats

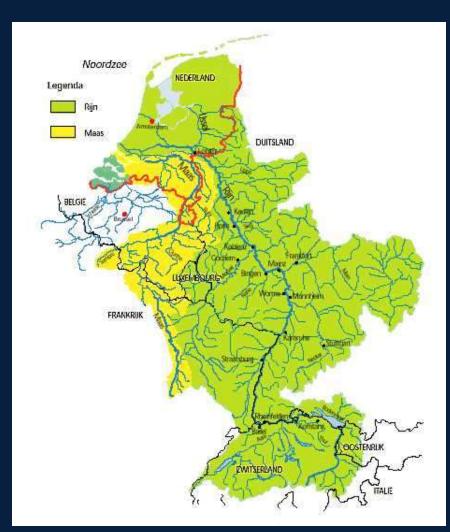
Salmon reintroduction projects



During the past 15 years, more than 16 million juvenile salmon have been released into the Rhine catchment

Returning salmon are currently detected at seven monitoring stations:

Westervoort (IJssel) Auermühle (Dhünn, Wupper catchment) Buisdorf (Sieg catchment) Troisdorf (Agger, tributary lower Sieg) Koblenz (Moselle) Iffezheim (Upper Rhine) Gambsheim (Upper Rhine)


The Netherlands are the gateway for all migratory fish Three migration routes: Haringvliet, New waterway (Rotterdam, open) and IJssel

Salmon migrate two times:

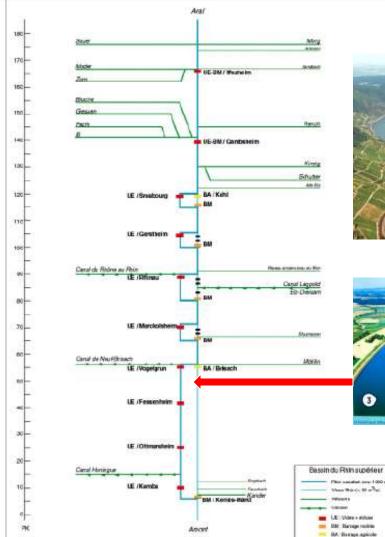
- as smolts (juvenile emigration)
- as adults (spawning migration)

Female salmon caught in the river Rhine delta

Barriers in the Rhine river system

Discharge sluices in the Haringvliet dam in the Dutch delta –

Sorry, we are closed



A huge dam blocks the Haringvliet, a former branch of the estuary of the Rhine and Meuse, from the North Sea. The discharge sluices are used to discharge excess water from the fresh water lake into the sea. Currently the government decided to let salt water intrude again on a small scale into the Haringvliet in order to restore the original ecosystem and to allow "free" fish passage.

Government plan: open gap in 2018

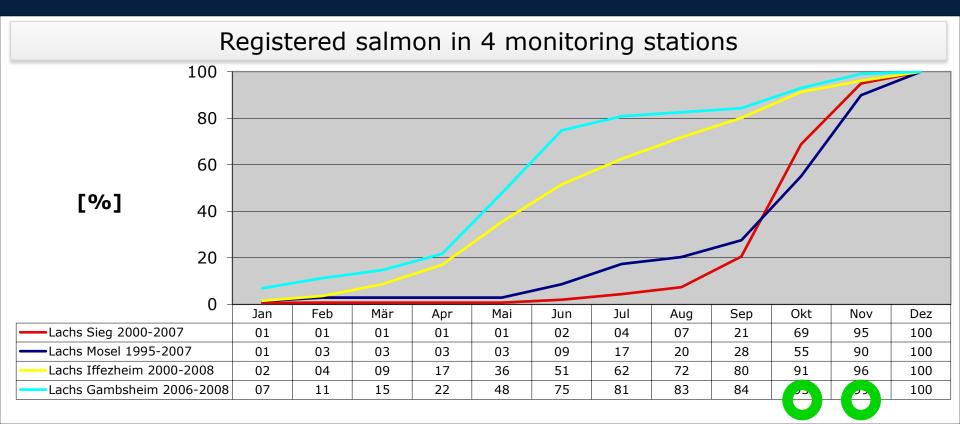
Barriers in the Rhine river system

03/07/2013

Upstream Salmon Migration again possible at some 480 Obstacles

Rotterdam, 3 July 2013

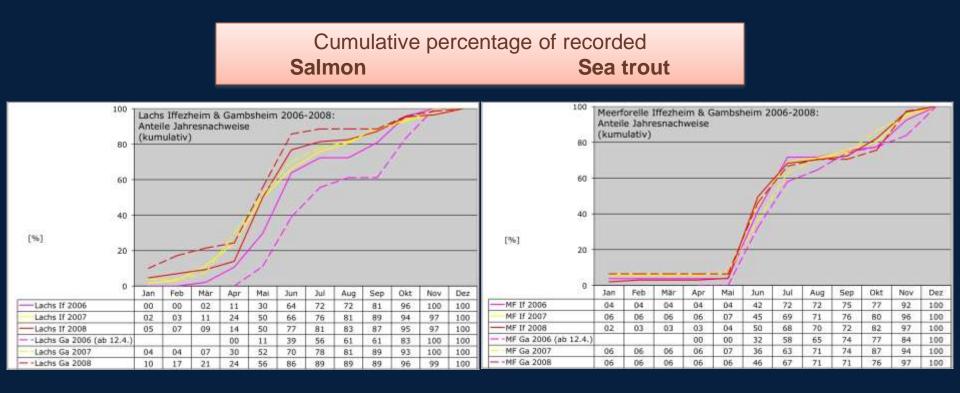
Result of the present ICPR balance of ecological measures taken during 2000 - 2012: Upstream migration is again possible at some 480 obstacles in the Rhine catchment.


122 km² of floodplains have been reactivated, 80 oxbow lakes and backwaters have been reconnected to the dynamics of the Rhine. [...] leading to an ecologically more stable and varied Rhine system.

www.iksr.org

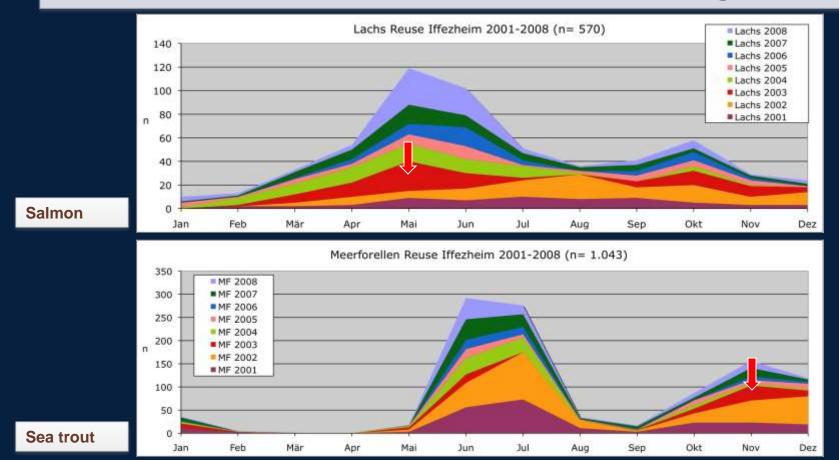
Do salmon find the entrance to the fishpasses in the *large* river Rhine "in time"?

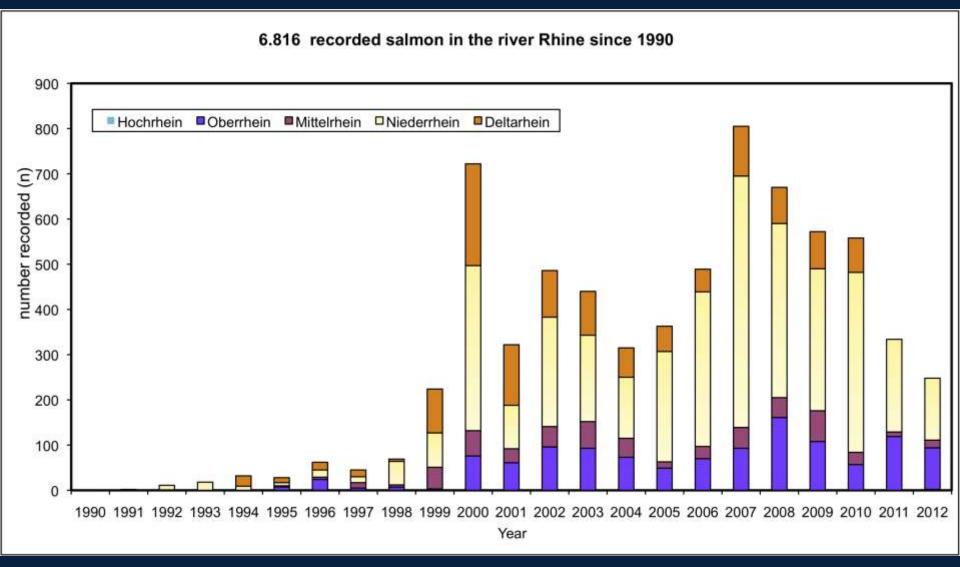
In 2006-2008 some 93 % of ascending salmon passed the 2nd fishpass Gambsheim in October = 4 to 8 weeks before spawning time. In November 99% have passed the obstacle.


=> No indications of a conflict with the time budget ...

Do salmon find the entrance to the fishpasses in the *large* river Rhine "in time"?

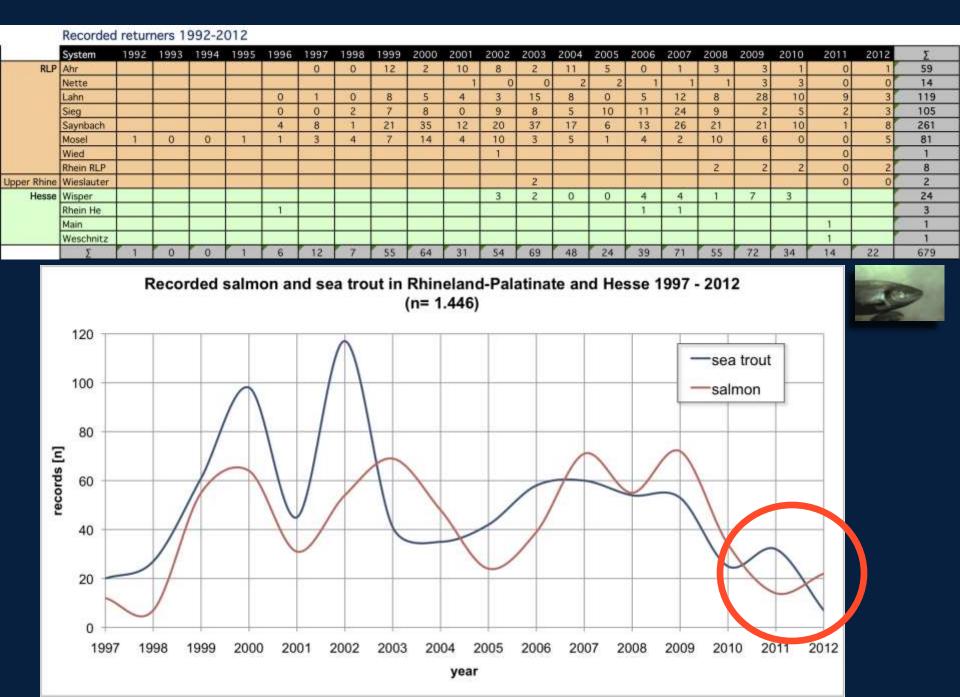
Comparing the cumulative percentage of recorded salmonids: it takes **salmon** and **sea trout** only a few days from the passage of Iffezheim (1st obstacle, see full line) to the passage of Gambsheim (2nd obstacle, see dotted line)


=> No indications of a conflict with the time budget ...


Water temperature and time budget

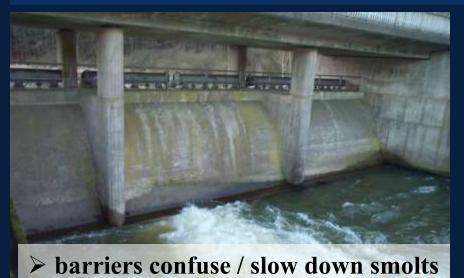
The migration pattern and the number of recorded salmonids in the extreme hot summer 2003 (red) (WT > 30° C) displayed only a gap in the migration – but no breaking off ! The migration started again as soon as the temperature decreased

=> No indications of a conflict with the time budget ...

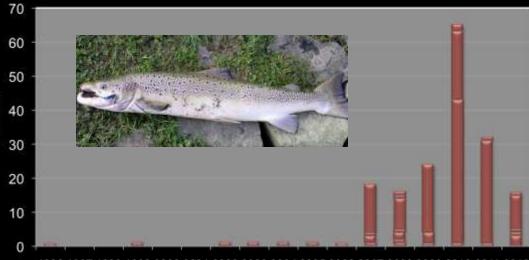


Returners

2011 and 2012: no data from the Delta-Rhine !


CIPR

The negative human impact is often linked with hydro-energy plants – *politicians want it, salmons don't …*



Poaching and "by-catch" seems to be an increasing problem ...

number

Reported catches of returning salmon in the Rhine catchment (investigation in progress)

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Year

Other factors

More predators, such as cormorants, asp, catfish, sander inhabiting the migration routes; sculpin and cormorants in the rearing habitats

More hydropower, incl. additional turbines in the Upper Rhine

Climate change, more dry years, like the drought of the century in autumn 2011 (picture), hot summers like 2003 with water temperature of 30° C in the Rhine

More very large container ships operating with some thousands horsepower (an under-estimated factor ?!)

Natural reproduction

Natural reproduction has been recorded in almost all accessible tributaries:

- Sieg-system
- Wupper, Dhünn
- Ahr, Nette, Saynbach
- Wisper
- Wieslauter
- Upper Rhine
- III, Bruche

In rivers Sieg (system) and Saynbach densities where particular high in some years.

Reproduction is recorded over more than 12 years

In the rivers Sieg and Saynbach 10 - 30% of the returners are allready 2nd generation (= "wild")

_				Jahr (Ber Bru	STAL IN	veise (Name of Column	duktion	im vo	range	Dinger	en He	thet/W	estar)	-	11 11	-	11	-	4
		Projektgewässer -	Restlements.									11.5.5									1
Land	System	Ausmahl wichtigster Zuflinke (* kein Besatz)	Enriberatz Lacha	1994	1115	1996	1997	1995	1999	2000	2001	2012	2003	2004	2005	2006	2007	2005	2009	2010	
D	Wupper-	Wupper		10	1	1	1	1	1	-6	1	0	1	- 6	Y	1	T.	00	1	1	1
	Dhùnn	Dhinn	1993	1	1	1	11	1	1	1	11	0	11	1.1	x	x	11	1.1	1	1.1	1
		Eitgenbech			1	- F	1	1	1	1	1	11	r	1	F		F	- F	F.	10	1
D	Sieg	Rheinische Sieg NRW	E.	×	1	- F. 1	1	- E	1	- D. 1	x		XX	1.1	T	1	1	- F 1	1	- F - 1	1
	0.07	Agger (untere 30 km)	set chan bin Băchen	x	1	1.	1	1.	1	1.	0	0	XXX	XXX	XXX	хх	XXXX	XXXX	XXXX	1.	1
		Naatbach	set actes hin 185	- E	11	- C.	11	- C.	11	- C.	XX	0	11	XXX	XXX	XXX	XXXX	XXXX	XXXX	- D.	1
		Pietabach	fee and	17	1	1.1	1	- 67	1	- 62	8	12	1	0	1	1	x	1	x	1	1
		Hantbach	Sun and	-60	1	1.	1	1	1	11	1		1		×	- 61	T.	1	Ť	1	
		Brdit	Segrystem set oden klasssischen ogionen auch in mittelgroßen Bach	x	T.	1.1	x	1.	1	1.1	0	0	XX	XX	0	ХХ	XXX	1.	XXX	1.	
		Homburger Bröf	nisohen Segrejatem seit Läkih zu dan klassisische Batterhogionen auch in en und mittekpröten Bä-	1	11	1.	1	1.	11	- C.	0	0	1	XX	XXX	ХХ	x	1.	1	111	
		Waldsröl	Rheinischen Ausützisch zu rron Barbenn rron Barbenn	17	1	11	1	11	1	11	8		1		8	XXX	XXX	1	8	11	
		Derenbach		1	1	1	1	1	1	1	1	12	1	1	1	a	E Y P	r .	1	- F -	
		Steinchesbech	1000	15	1	1	1	1	1	- 63	1	1	1	1.1	1	0	1	1.	1	- C	
		Krabach	E @ 42	- E	1	- E	1	- E	1	- E .	1	- E	1	11	х	1	1	1.5	1	1.1	
		Gierzhagener Bach	a 192 a 192 und chon	11	1	11	1	-17	1	-12	1	0	1	1	1	1	x	1	1	1	
		Irsenbech	thest and n- u	1	1	6	1	-62	1	1	1		1	1	1	1	Ť.	£1.	1	6	1
		Süb	Lachebeshiz II 1988, wait 199 Aachen- und o Busgesuchten	12	1	18	1	12	1	12	0	0	1	1	12	XX	12	11	1	1	1
		Schlingenbach	25558	10	1	1.	1	10	1	10	1	0	1	1.5	1	T.	x	XXXX	XXX	1	
		mittere Sieg RLP	1994	11	1	11	1	10	1	- Ker	x	0	.8	0	x	x	x	XXXX	x	0	
		Nistersystem	1991	- F Y	1	10	1	11	XX		x	×	x	×	x	XXX	XX	XXXX	x	×	1
		Wisserbach Eibbach	1991	1.	1	1	.1	1	1	XXX	XX	XX.	0	x	XX	XXX	XX	XXXX	0	x	1
			1995	1.1	1	1.1	1	1.1	11	1.1	1	0	x	0	1	10	XX	XX	.0	0	
		Heller-Daade	1998	111	11	100	1	111	1	111	1	0.0	8	11	1	11	X	X		0	ĺ
		Asdorf	1997	12	100	10	11	10	100	1.0	1	101	1	10	1	10	Y.	 F8. 	T.	4	l
D	Ahr	Ahr	1995	16	11	1.7	11	10	11	X	0	0	х	х	0	0	0	7	0	XX	
D	Nette	Nette *	+-	10	1	1	1	1.1	1	1	x	4	XX	x	x	x	0	X	0	x	1
D	Saynbach	Saynbach	1994	- Fr	1	1.	1	1.	1	XX	XX	XX	XXX	XXXX	XXXX	XX	XXXX	XXXX	XX	XX	
1.21	2000000	Brexbach	1994	10	1	1	0.0	1	1	XXXXX	XX	x	X	4	0	8	0	XXX	XX	XX	1
D	Mosel	Etzbech	2005	13	T.	18	T.	10	T.	1	T	17	1	1	1	1.	1	1	1	1.	
		Kyt	1996	- 10	11	16	16	10	11	14	11	10	V.	- 60	X	- F.C.	X	10	X	10	
		Prümsystem	1996	-1-	1	1	1	1	T	1	T	1	.1	1	T	-1	T	-1	T	-1	
Con.		Sauer	1992	- F.*	1	1	1	- F.*	1	1	T.	- P	8	- 111	T.	- 111	T.	- 111	T	- m	
		Our	1992	- F.).	1	- F.).	16	- r.,	1	11	11	- <u>r</u> ()	1	- C.	1	- C.	1	0.	1	- F (ł
D	Lahn	Mühlbach	1994	10	1	10	11	- 17	11	00	0	17	10	- f.;	X	11	X	11	X	11	
		Weil	1995	-F	1	1.	- E	-6	- E	-	1	-10	1	1	T	-1-	T	1.	T	-6	
_	-	Dil	1995	1	r.	1.	R.	1	Re-	1	i.	1	1	1	1	1	1	1.	1.	1	ł
D	Nahe	Nahe	2004 (einmilig)																	1	
D	Wisper	Wispor	1999	- 10				- 1					XX.	XX			XX	XXXX	0	×	i
D	Main	Schwarzbach	2009	-		-	1	-		10		-	AA	AA		-	**	0	0	0	ł
	- and	Kinzigsystem (Hessen)	2009	1	14	1	10	1	14	1	1	1		1	1		1	4	1	1	Í
D	Alb	Alb	2001	-14	1	1	4	1	17.1	1	1	1	1	1	1	1	1	1	1	1	f
DIF	(Wies)Lauter	(Wesi)Lauter	1991	-	1	-	1	-	1	10	-	1	1		-		-	. 7	×	×	1
D	Murg	Murg	2001	1	-	1	1	-	1	-	-	-	1	1	x	×	x	1	-	-	Í
F/D	Rhein	Rhein unterh. Iffezheim *	1000		1.17		e ye	1	191	1	1	1		x			1			1	1
D	Rench	Rench	2001	100	nu la	100	and a second	10	e la ve	10	- Ver	15	SHYDE	-	Styles	10	1	100	STATES OF	10	1
1	III	Bruche	1991	-	×	x	×	x	×	x	×	x	×	x	×	x	×	x	XXX	XXX	1
		Moder	2005	12	-	1	1	1	-	1	-	1	-		x	x	x	x	X	X	i
		oberes illsystem**	1991	1	×	×	×	×	×	×	×	×	×	×	×	x	×	x	×	x	Í
D	Kinzig	Kinzig (Baden-Württembe	2001	12	1	1	1	The years	1	1.1	1	100	-	x	1	100	1	1	T.	1	Í
D	Elz-Oreisam	Dz	2005	1	1	1	1	1	1	1.	1	1	1	-	1	1	1	1	1	1	Í
	Cia-bridinani	Dreisam	2008	1.0	1	1	1	1	1	10	1	1	1	T.	÷.	1	1	51	1	11	f
F/D	Rhein	Restrien (Althein)	1991	1	11.000	1	11.0	1	1.4	1	digin.	1	1.1	1	1.1	10	1	10	1.1	1	Í
CH	Wiese	Wiese	1984	1	1	1	1	1	195	1	1.1	1	1	-	1	1	1	1	1	1	Í
-	Birs	Birs	1996	- 6	1		1	- 6	1	- 6	1		1	1	1	1	1	10	1	10	ţ
CH			1.00000									-		-							ø
CH	Ergolz	Ergolz	1995	1.1		1		1.00		1	1.1	1.1	1	1		1		1	1.5	1.1	

production in the Rhine system

putitative Nachweise / Einzelnachweise / Einzellokalitäten beproht	X
palitative Nashweise / Rückkehrer oberhalb Wanderhindernis eingesetzt	(X)
eringer Reproduktionserfolg (1 bis ± 5 Parts/100 m2)	XX
oher Reproduktionsenlolg (> 5 - 50 Pens/100 m2)	XXX
ehr hoher Reproduktioneerfolg (> 50 Parrs/100 m2)	1000
Interauchung durchgeführt, keine Nachweise	0
ioht untersucht	1
lachweis unsicher	2

Laichgründe (größtenteile) erreichbar	-
Laichgründe partiellieingeschränkt erreichbar	
Laichgründe nichtlausnahmsweise erreichber	

Conclusions

River-specific problems, like dams, weirs, hydroelectric power stations, navigation, habitat quality, temperature, have not improved significantly in the past years – some got worse (e.g. poaching and "by-catch").

The return rate to the spawning rivers is insufficient and most probably even decreasing

The documented natural reproduction and fish-pass efficiency are clear indicators, that the reintroduction can be achieved – and yes: as far upstream as Switzerland !!!

Finally: Reintroduction is a process of adaptation – nobody knows, how many generations it takes ...

Thank you very much for your attention

Merci beaucoup pour votre attention