Hydrovision conference – Portland (OR), USA – Aug 3, 2006

Lessons learned from dam removal experiences in France

- Some (brief) insights -

D. AELBRECHT

Senior Partnership Project Manager Electricité de France R&D @ EPRI - Palo Alto (CA)

Outlines

- The regulatory background in France
- Dam removal decision : non-integration of issues
- 3 dam removal experiences : some brief facts & lessons learned
- Concluding remarks

The regulatory background in France (1/2)

2 kinds of Hydro power projects license (Hydro Power Act, 1919) :

• « Concessionnary » license :

- ➢ P > 4.5 MW − initial duration : 75 years − Renewals for 30 years
- > At license expiration, projects are given back to Government Authority :
 - ✓ renewal of license (based on revised requirements and water rights)
 - $\checkmark\,$ or project may also be devoted to other water uses
 - ✓ or dam removal decision costs are beared by Government Authorities

• « Authorized » license :

- ➢ P < 4.5 MW − initial duration : 75 years − Renewals for 75 or 30 years</p>
- At license expiration, licensee remains the owner of facilities. If license renewal is rejected :
 - $\checkmark\,$ « restoration to natural river conditions » is required with costs beared by licensee
 - $\checkmark\,$ or licensee may deliver back facilities to Government Authorities

The regulatory background in France (2/2)

Fish protection - Water & Fish Act, 1984 :

- determines Instream Flow conditions requirements, through a progressive approach :
 - New projects must comply with new requirements
 - For existing projects, a progressive increase of instream flow is requested until relicensing time when full compliance is required
- imposes an « effectiveness » requirement for fish passage facilities, as opposed to previous regulatory statements which implicitely suggested that « administrative » facilities would be Ok ...
 - ... « facilities MUST ENSURE effective upstream and downstream fish migration ... »

Dam removal decision issue ... (1/2)

 Dam removal is primarily resulting from a <u>lack of integration</u> of predominant issues or priorities

• ... and lack of integration of their foreseen evolution over time

© EDF 2006

Dam removal decision issue ... (2/2)

 Consequence : the project can no longer meet its assigned goals under cost-effective conditions

• Some reasons for the « lack of integration » :

- Lack of past knowledge about physical processes & environmental issues : e.g. watershed approach (vs) local analysis
- Evolution in social concerns & priorities :
 e.g. energy development needs (vs) environmental impacts
- Centralisation & technical « mono-culture » in former decision-making processes
- No technical and/or economical possibilities for adaptive measures, due to irreversible past technology solutions

≻ ...

3 main dam removal experiences in France

Hydrovision conference - Portland (OR) - USA, Aug 3, 2006

© EDF 2006

RØD

Kernansquillec, Léguer river (1996)

Key facts :

• H = 15 m ; V = 300 acre-feet (400 000 m³) ; Vol. sed = 50% ; P = 1.3 MW

• Dam removal reasons :

- Safety issues : spillway under-designed + dam highly susceptible to overtopping (huge safety concern during floods in 1995)
- Environmental issues :
 - ✓ fish passage facility not effective
 - Reservoir eutrophication + sediments generate poor downstream WQ (water-supply withdrawal ; fish-habitat)
- ⇒Cost estimation to comply with Env
 + safety requirements too high
- Main dam removal issue : management of sediment !!

Kernansquillec, Léguer river (1996)

Sediment management process (started Apr 96) :

- 1st phase : main channel Hydrodredging + slow draining of reservoir
 - > Q = 300 l/s diverted into 2 decantation-ponds 94000 m³ of sed. removed
 - dZ/dt = 3 cm/day over 4 months
- 2nd phase : implementation of 4 downstream siltation-weirs (12000 m³ of total capacity) + rapid final reservoir draining (flushing) :
 - \rightarrow dZ/dt = 25 cm/day in 1 day
 - > 10000 m³ sediments have been trapped ; dredged in 8 days in Oct 1997

Dam removal lessons learned :

- Total cost = \$1.2 M Sediment dredging = 65% => \$7 / m³
- Continuous monitoring of Water Quality (O2, NH4)
- Preventive over-treatment at downstream water-supply withdrawal unit
- Social acceptance ; New recreational opportunities
- Fish population restoration : Salmon : Ok ; Eel : ??

St-Etienne du Vigan, *Allier river* (1998) Maisons-Rouges, *Vienne river* (1998)

Dams removal decision based on a Watershed approach :

Gov. plan for <u>migratory fish restoration</u> (+ flood protection, & drought management) over the Loire watershed – Jan. 1994

St-Etienne du Vigan, Allier river (1998), & Maisons-Rouges, Vienne river (1998) main lessons learned

	St-Etienne du Vigan	Maisons-Rouges
	H = 12 m ; P = 1 MW	H = 4 m ; P = 2.5 MW
Sediments	sand, gravels (30 000 m ³ : not an issue) ; draining during flood	mainly sand : not an issue
Costs	\$1.3 M for decomissiong	\$2.7 M for decomissioning
	\$1.2 M for compensatory measures	\$5.3 M for compensatory measures
		NB : \$9.5 M for dam upgrading solution (rejected)
Other main issues	Loss of taxes <u>No real local planning to design an</u> <u>alternative project for the area</u> : recreation and related activities	Reservoir uses : - Water intakes for irrigation - Water sports, campground => <u>Reservoir became part of the local</u> <u>« natural » / cultural legacy</u>
		Loss of taxes => huge local reluctance
Fish migration benefits	 Significant increase of upstream spawning areas slight progressive increase of salmon adults passages 	- Shad : + + - Marine Lamprey : + + + - Salmon : +
#11 D. Aclbrecht	Hydrovision conference - Portiand (OR) - USA, Aug 3	EDF 2000 € EDF 2000 R®D

Bottom line

- Lack of issues integration often resulted in the dam removal decision
 - => don't miss integration of issues for the dam removal business itself !

• Economics :

- Sediment management + Social compensatory measures : potential big parts
- Cost-benefit analysis of multiple scenarios, including full-cost accounting, were never used to support removal decisions

• Watershed approach (vs) local concern :

- Local social reluctance and conflict : loss of taxes ; dam/reservoir became part of cultural, economical, and « natural » legacy
- Tranformation of the Hydro business from local « turbine operator » towards « water resources managers »
- Need for <u>decision-support framework</u> to handle « integration of issues » when dam removal is envisioned or questioned :
 - Full-cost accounting (externalities) if « 1D » metrics (economy) makes sense ?
 - How to find a consensus about priorities among issues/perspectives when multiple metrics are necessary ?

Thank you !

